SPECIFICATION FOR APPROVAL

-) Preliminary Specification
-) Final Specification

Title	14.0" WCXGATET LCD				
BUYER		SUPPLIER	LG Display Co., Ltd.		
DPN		*MODEL	LP140WU1		
l		'uff k	SPH2		

^{*}When you obtain standard approval,

	SV
APPROVED BY	SIGNATURE
Please return 1 copy for yo your signature and comme	ur confirmation with nts.

APPROVED BY	SIGNATURE
REVIEWED BY	
PREPARED BY	
Products Engineerii LG Display Co.,	

p vase use the above model name without suffix


Contents

No	ITEM	Page
	COVER	1
	CONTENTS	2
	RECORD OF REVISIONS	3
1	GENERAL DESCRIPTION	N O
2	ABSOLUTE MAXIMUM RATINGS	
3	ELECTRICAL SPECIFICATIONS	50
3-1	LCD ELECTRICAL CHARACTERISTICS	7
3-2	LED BACKLIGHT ELECTRICAL CHARACTERISTICS	8
3-3	INTERFACE CONNECTIONS	9
3-4	eDP SIGNAL TIMING SPECIFICATIONS	11
3-5	SIGNAL TIMING SPECIFICATIONS	15
3-6	SIGNAL TIMING WAVEFORMS	15
3-7	COLOR INPUT DATA REFERENCE	16
3-8	POWER SEQUENCE	17
4	OPTICAL SPECIFICATIONS	18
5	MECHANICAL CHARACTER'STICS	21
6	RELIABLITY	24
7	INTERNATIONAL STANDAL OS	25
7-1	SAFETY	25
7-2	ENVIRONMENT	25
8	PACKING	26
8-1	DESI-3NATION OF LCT MA. 1K	26
8-2	PACKING FOR	27
8-3	PACKING AS `EMP'_Y	28
8-4	PREACUTIONS FOR UNPACKING THE BOX	30
8-5	PREACUTIONS FOR HANDLING TRAY	31
9	PRECAUTIONS	32
	PPENDIX A. LGD PROPOSAL FOR SYSTEM COVER DESIGN	34
	PENDIX B. LGD PROPOSAL FOR eDP INTERFACE DESIGN GUIDE	48
	APPENDIX C. LGD Proposal for Measurement Method (Thickness/Bracket Height/etc.)	57
	APPENDIX D. ENHANCED EXTENDED DISPLAY IDENTIFICATION DATA	58

1. General Description

1-1. Introduction

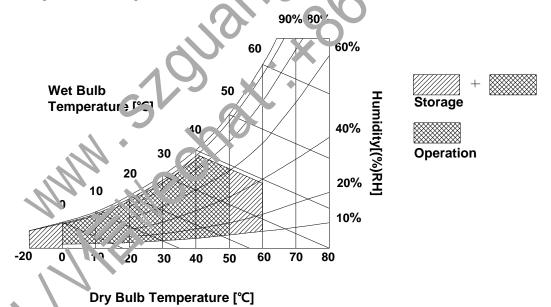
The LP140WU1 is a Color Active Matrix Liquid Crystal Display with an integral LED backlight system. The matrix employs oxide Thin Film Transistor as the active element. It is a transmissive type display operating in the normally black mode. This TFT-LCD has 14.0 inches diagonally measured active display area with WUXGA resolution (1920 horizontal by 1200 vertical pixel array). Each pixel is divided into Red, Green and Blue sub-pixels or dots which are arranged in vertical stripes. Gray scale or the brightness of the sub-lixel color is determined with a 8-bit gray scale signal for each dot, thus, presenting a palette of 15,77,7,216 colors. The LP140WU1 has been designed to apply the interface method that enables on power, high speed, low EMI. The LP140WU1 is intended to support applications where thin thickness, ow power are critical factors and graphic displays are important. In combination with the vertical arranglement of the sub-pixels, the LP140WU1 characteristics provide an excellent flat display for office autemation products such as Notebook PC.

1-2. General Feature

Active Scree	n Size	14.0 inches diagonal
Outline Dimension		306.59 (H, Typ.) × 198.40 (V, Typ.) × 1.95 (D, Max.) [mm] (w/o PCB) x 3.95 (D, Max.) [mm] (w/ PCB)
Pixel Pitch		0.1571mm x 0.1571mm
Pixel Format		1920 horiz. by 1200 vert. Pixels RGB strip arrangement
Color Depth		8 bit, 16,777,216 colors
Luminance, \	White	400cd/m ² (Typ.)
Power Cons	umption	Total 2.63W (Typ.) Logic: 0.42W (Typ. @ Moscie), R/L: 2.21W (Typ.) Total 2.75W (Max.) Logic: 0.45W (Max. @ Mcsaic) B/L: 2.30V (Nex.)
Weight		170g (Max.)
Display Oper	rating Mode	Normally black
Surface Trea	tment	Anti glare treatment (3H) of the front Folarizer
Color Gamut	(Based on CE 1931)	sRGB Typ. 100%, Min 95% (`ove. Ratio)
LED Dimmin	g Control mode	DC Dimming
RoHS Comp	liance	Yes
BFR / PVC /	As Free	Yes for all
eDP version	(Tcon)	eDP1.4b
DPCD version	n	Ver1.4
	PSR	PSF 2 scopport
	sDRRS	nd it suppo t
	DMRRS	Nc. support
	Adaptive sync	LRR2.5(48_60Fz)
	NVSK	Not surpor
Function	S.3.C	Down ore ad 0.5%
	NVIDIA DDS	Ne support
	DSC	Not support
	Logo in	Not support
	HDF	Not support
	Inter C-DT	UBRR, PixOptiX
	,	
X (Z)	•	

2. Absolute Maximum Ratings

The following are maximum values which, if exceeded, may cause faulty operation or damage to the unit.


Table 1. ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	Va	lues	Units	Notes	
Parameter	Symbol	Min	Max	Units	Notes	
Power Input Voltage	VCC	-0.3	4.0	l'c	at 25 ₂ 2°C	
Operating Temperature	Тор	0	50	0);	190	
Storage Temperature	Тѕт	-20	60	• °C	1,2	
Operating Ambient Humidity	Нор	10	96	%РН	1	
Storage Humidity	Нѕт	10	Qr	%R +	1,2	

Note: 1. Temperature and relative humidity range arc shown in the figure below.

Wet bulb temperature should be 39°C Max an ino condensation of water.

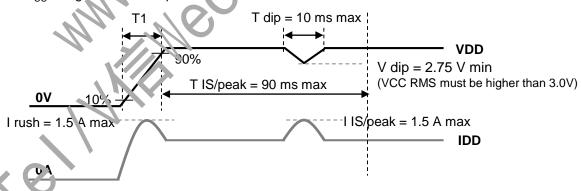
Note: 2. Storage Condition is guaranteed under packing condition

3. Electrical Specifications

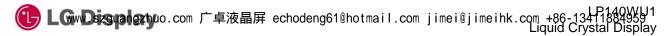
3-1. LCD Electrical Characteristics

Table 2. LCD ELECTRICAL CHARACTERISTICS

Parameter		Symbol	Values			I Imit	Notes
		Symbol	Min	Тур	Max	Unit	Notes
Power Supply Input Voltage		Vcc	3.0	3.3	3.6	V	
Permissive Power Supply Inpu	ıt Ripple	Vccrp	-	-	1.70	mV _{p-p}	V-2)
Dower Supply Input Current	Mosaic	Icc	-	127	'33	mA	
Power Supply Input Current	R/G/B	Icc	-	127	136	L v V	
Dower Consumption	Mosaic	Pcc	-	0.42	0.45	VV	2
Power Consumption	R/G/B	Pcc	-	.42	0.4ა	W	
Power Supply Inrush Current		Icc_p		- 0	5	Α	3
Differential Impedance	·	ZeDP	72.3	95	97.8	Ω	


Note)

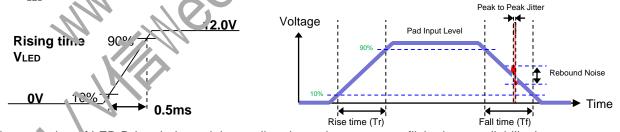
- 1. The measuring position is the connector of LCM and in e test conditions are under 25°C, fv = 60Hz
- 2. The specified I_{CC} current and power consumption are under this $v_{CC} = 3.3 \text{V}$, 25°C , fv = 60Hz condition and Mosaic / RGB pattern.



3. The V_{CC} rising time & Vcc Dip cond tion

Demnition:

- V dip: VDD drop voltage after power on
- T dip : the duration time of V dip
- T IS/peak : maximum current occurring time after power on
- I IS/peak : maximum current in T Imax



3-2. LED Backlight Electrical Characteristics

Table 3. LED B/L ELECTRICAL CHARACTERISTICS

Parameter		Symbol	Values			Unit	Notes
Para	Faranietei		Min	Тур	Max	Unit	Notes
LED Power Input Volta	age	VLED	5.0	12.0	21.0	V	1
LED Power Input Curr	ent	ILED	-	184	192	mA	2
LED Power Consump	tion	PLED	-	2.21	269	W	2
LED Power Inrush Cu	rrent	ILED_P	-	-	1.5	A	X
PWM Duty Ratio			5	-	300	%	4
PWM Resolution				10		ii H	5
PWM Jitter			0		0.05		6
PWM Frequency		Fрwм	200	- *	20.00	Hz	7
	High Level Voltage	V _{PWM_H}	2,5	-	3.6	V	
	Low Level Voltage	V_{PWM_L}		- 0	7.3	V	
	Tr / Tf @ 200Hz				25/25	us	
PWM	Tr / Tf @ 2Khz	A	-	-	2.5/2.5	us	
	P to P Jitter @ 200hz) -C	-	1	us	8
	P to P Jitter @ 2Khz		O.	-	0.1	us	0
LED_EN	High Voltage	YLED_EN_H	25	-	3.6	V	
	Low Voltage	VLED_EN_L	0	-	0.3	V	
Life Time	10)		15,000	-	-	Hrs	9

- 1. The measuring position is the connector of LC v₁ and the test conditions are under 25°C.
- 2. The current and power consumption with LTL Driver are under the $V_{LED} = 12.0 \text{V}$, 25°C, PWM Duty 100% and White pattern with the normal frame irequency operated (60Hz).
- 3. The V_{LED} rising tine is same as the minimum of T13 at Power on sequence.

- 4. The operation of LED Driver below minimum dimming ratio may cause flickering or reliability issue.
- 5. 10bit resolution means it's possible to change PWM duty by 0.1% step. (8bit operated by 0.4% step)
- 6. If Jitt or or PWM is bigger than maximum, it may induce flickering.
- 7. This Spec. is not effective at 100% dimming ratio as an exception because it has DC level equivalent to 0Hz. In spite of acceptable range as defined, the PWM Frequency should be fixed and stable for more consistent brightness control at any specific level desired.
- 8. PWM rebound spec ≤ 0.1V
- 9. The life time is determined as the time at which brightness of LCD is 50% compare to that of minimum value specified in table 7. under general user condition.

3-3. Interface Connections

Table 4. MODULE CONNECTOR PIN CONFIGURATION (CN1)

Pin	Symbol	Description	Notes
1	DBC	Dynamic Backlight Control (Panel FW : Disabled)	
2	GND	High Speed Ground	
3	Lane1_N	Complement Signal Link Lane 1	~ (Q).
4	Lane1_P	True Signal Link Lane 1	Olli, O'X
5	GND	High Speed Ground	(2)
6	Lane0_N	Complement Signal Link Lane 0	V VO
7	Lane0_P	True Signal Link Lane 0	
8	GND	High Speed Ground	
9	AUX_CH_P	True Signal Auxiliary Channel	[Coni ec.or] [-F.c. 20696-030E-02
10	AUX_CH_N	Complement Signal Auxiliary Charne	(30pin, 0.4pitch)
11	GND	High Speed Ground	
12	VCC	LCD logic and driver powe (Ty _k , 3.27/)	
13	VCC	LCD logic and driver pov êi (Typ. 3.3V)	[Connector pin arrangement]
14	BIST	Built in Self Test (Typ3V)	Pin 30 Pin 1
15	GND	LCD logic and drive ground	
16	GND	LCD logic a duriver ground	
17	HPD	HPD signs i pin (Typ. 3.5 V)	
18	BL_GND	LED Racklight ground	
19	BL_GND	LLD Backlight groun I	
20	BL_GN'D	LED Backli, h. g pund	[LGD I2C using information]
21	BL_G^'D	LFD Backlight ground	1.Pin for P-Vcom : #24, #25
22	BL ENABLE	!ಚ್ರೌ ನವೀklight control on/off control (Typ. 3.3V)	2.P-Vcom Address : TBD 3.PMIC control Address : TBD
23	BL PWM	Cyst√m PWM signal input for dimming (Typ. 3.3V)	4.LED IC control Address : TBD
24	NC Reserved	Reserved for LCD manufacture's use	
25	NC Reserved	Reserved for LCD manufacture's use	
26	VLF.D	LED Backlight power (Typ. 12V)	
21	LED	LED Backlight power (Typ. 12V)	
28	VLED	LED Backlight power (Typ. 12V)	
29	VLED	LED Backlight power (Typ. 12V)	
30	NC Reserved	Reserved for LCD manufacture's use	

3-3-1. Input/output signal circuit

Figure1.HPD Output circuit is as below

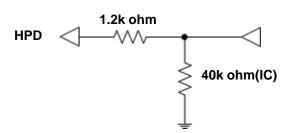


Figure 2.BL PWM input circuit is as below

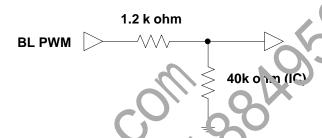


Figure 3.BL Enable input circuit is as below

Figure 4.Bl input circuit is as below

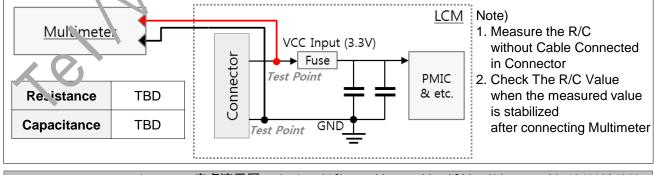
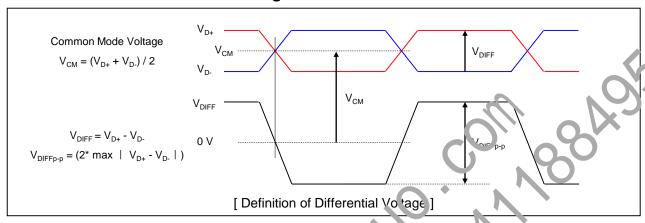
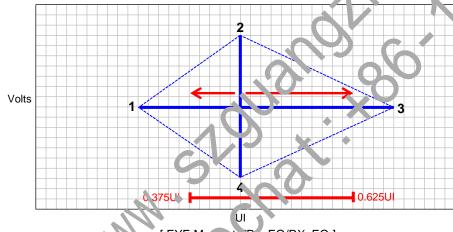


Figure5.DBC input circuit is as belo.

Figure 6. R/C Loading Parameter in VCC Loop


Figure 7. Schematic Diagram for VCC Loop R/C Loading Measurement



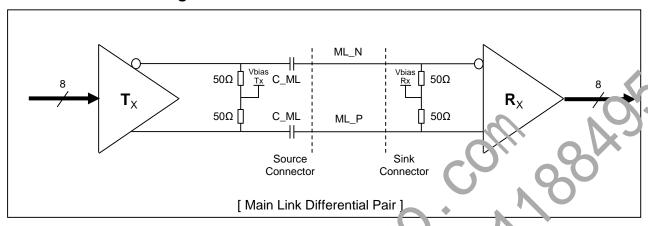
3-4. eDP Signal Timing Specifications

3-4-1. Definition of Differential Voltage

3-4-2. Main Link EYE Diagram

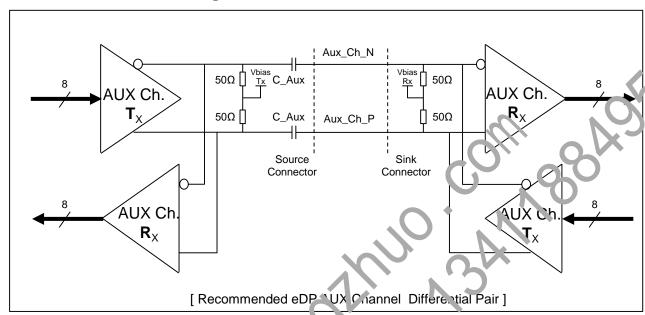
[EYE Mask t .Ts_EQ/RX_EQ]

Point	(ارا) Time	Voltage(V)
1	Any U' location (0mV)	0.000
2	0.375 <point2<0.625< td=""><td>0.0375</td></point2<0.625<>	0.0375
(3)	Point1 + 0.5UI	0.000
4	0.375 <point4<0.625< td=""><td>-0.0375</td></point4<0.625<>	-0.0375


Point	Time(UI)	Voltage(V)
1	Any UI location (0mV)	0.000
2	0.375 <point2<0.625< td=""><td>0.035</td></point2<0.625<>	0.035
3	Point1 + 0.45UI	0.000
4	0.375 <point2<0.625< td=""><td>-0.035</td></point2<0.625<>	-0.035

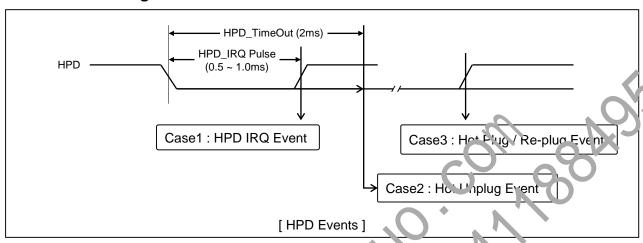
[eDP TP3_EQ EYE Mask Vertices]

[eDP RX_EQ EYE Mask Vertices]


3-4-3. eDP Main Link Signal

Parameter	Symbol	Min	O',(i	Max	Ur.	Notes
Unit Interval for high bit rate (2.7Gbps / lane)	UI_HBR		370		ps	
Unit Interval for reduced bit rate (2.43Gbps / lane)	UI_2.16	10.	AIZ	_	ps	
Unit Interval for reduced bit rate (2.16Gbps / lane)	UI_2.16	-	46.	-	ps	
Unit Interval for reduced bit rate (1.62Gbps / lane)	UI NBR	•	617	-	ps	
Link Clark Down Spreading	Amplitude	0	-	0.5	%	
Link Clock Down Spreading	Frequency	30	-	33	kHz	
Differential peak-to-ceak Voltage at Sink side connector	TX-DI Fp-p	75	-		mV	TP3_EQ
EYE width at Sink side connector	TX-EYE-CONN	0.5	-	1	UI	TP3_EQ
Differential peak-to-peak √r it ge at RX package pin	$V_{RX-DIFFp-p}$	70	-	ı	mV	TP4_EQ
EYE width at RX package Lin	T _{RX-EYE-CONN}	0.45	-	-	UI	TP4_EQ
Rx DC compon mode voltage	V _{RX CM}	0	-	1.0	V	
.C Co olir g Capacitor	C _{SOURCE-ML}	75		200	nF	Source side

- 1. Termination resistor is typically integrated into the transmitter and receiver implementations.
- 2. AC Coupling Capacitor is not placed at the sink side.
- 3. In cabled embedded system, it is recommended the system designer ensure that EYE width and voltage are met at the sink side connector pins.


3-4-4. eDP AUX Channel Signal

Parameter	Sym'o'	Min	Туг	Max	Unit	Notes
AUX Unit Interval	N O	0.4	.0	0.6	us	
AUX Jitter at Tx IC Package Pins		<u>-</u>	-	0.04	UI	Equal to 24ns
AUX Jitter at Rx IC Package Pins	litter	- +	-	0.05	UI	Equal to 30ns
AUX Peak-to-peak voltage at TX package pins (TP1)	~0	0.18	0.20	1.38	V	
AUX Peak-to-peak voltage at TP3	AUX DIFFp-p	0.14	ı	1.36	V	
AUX EYE wight at Connector Pins of Ty and Rx		0.98	-	-	UI	
AUX DC common mude vultage	V _{AUX-CM}	0		1.0	V	
AUX AC Coupling Capacitor	C _{SOURCE-AUX}	75		200	nF	Source side

- 1. Termination resistor is typically integrated into the transmitter and receiver implementations.
- 2. AC Coupling Capacitor is not placed at the sink side.
- V_{AU} JIFF $p = 2* | V_{AUXP} V_{AUXN} |$

3-4-5. eDP HPD Signal

Parameter	Symbol	Min	:vp	Max	Unit	Notes
HPD Voltage		2.25		3.6	v	Sink side Driving
Hot Plug Detection Threshold	HPD	2.1	-	/	V	Source side Detecting
Hot Unplug Detection Threshold		-		0.8	V	Source side Detecting
HPD_IRQ Pulse Width	HPD_InQ	0.5		1.0	ms	
HPD_TimeOut	. 0	2.0	X	-	ms	HPD Unplug Event

- 1. HPD IRQ : Sink device want to not 'y the Source device that Sink's status has changed so it toggles HPD line, forcing the Source device to read as Link / Sink Rec. iver DPCD field via the AUX-CH
- 2. HPD Unplug: The Sink device is no long or an other to the Source device and the Source device may then disable its Main Link as a power, saving mode
- 3. Plug / Re-plug: The Sonk device is now attached to the Source device, forcing the Source device to read its Receiver capabilities and Link / Sink status Pooling DPCD fields via the AUX-CH

3-5. Signal Timing Specifications

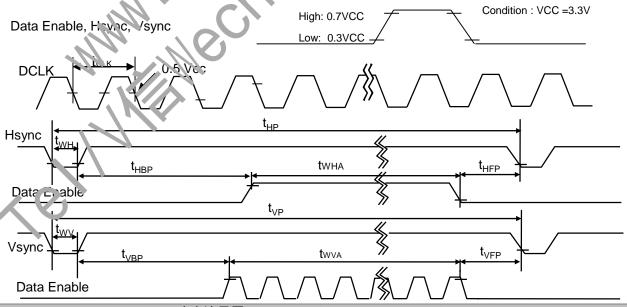

This is the signal timing required at the input of the User connector. All of the interface signal timing should be satisfied with the following specifications and specifications of eDP Tx/Rx for its proper operation.

Table 4. TIMING TABLE

ITEM	Symbol		Min	Тур	Max	Unit	Note
DCLK	Frequency	f _{CLK}	-	154.13	-	MHz	
	Period	t _{HP}	-	2080	-	2	(0)
Hsync	Width	t _{WH}	-	32	- (t _{CLK}	
	Width-Active	t _{WHA}		1920			0.0
	Period	t _{VP}	-	1235		N	0
Vsync	Width	t _{wv}	-	6	-	1P	
	Width-Active	t _{WVA}		120 7		×	
	Horizontal back porch	t _{HBP}	-	80			
Data	Horizontal front porch	t _{HFP}	X- /	48	1	t _{CLK}	
Enable	Vertical back porch	t _{VBP}		26	-		
	Vertical front porch	t _{/FP}	- (20	-	t _{HP}	
	Refresh rate	Чz	-	0	-		

Notice. all reliabilities are specifie. I fo timing specification based on refresh rate of 60Hz. However, LP140WU1 has a good actual performance even at lower refresh rate (e.g. 48Hz) for power saving Mode, whereas LP140WU1 is actually only for function under lower refresh rate. 60Hz at Normal mode, 48Hz at Power save mode. Don't call Ficker level (For ar save mode).

3-6. Signal Timing Waveforms

3-7. Color Input Data Reference

The brightness of each primary color (red, green and blue) is based on the 8-bit gray scale data input for the color; the higher the binary input, the brighter the color. The table below provides a reference for color versus data input.

Table 6. COLOR DATA REFERENCE

												Inpu	ıt Co	olor	Dat	a		4		.			N		
	Color				RE	D							GRI	EEN							B!	UL)	V		
		MS							SB	MS						_	3E	1,18		_(1			SB
	T						R2							G3		G			B6		-	/_		B1	
	Black	0	0	0	0	0	0	0	0	0	0	0	0		1	0	0	0	0	0	0	0	0	0	0
	Red	1	1	1	1	1	1	1	1	0	0	0	U	0	0	0	C	0	0	0	0	0	0	0	0
	Green	0	0	0	0	0	0	0	0	1	1		1	1	1		1	0	0	0	0	0	0	0	0
Basic	Blue	0	0	0	0	0	0	0	0	0)	0	0	0	0	0	0	1	1	1	1	1	1	1	1
Color	Cyan	0	0	0	0	0	0	0	0		1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Magenta	1	1	1	1	1	1	1	1	0)	0		0	0	0	0	1	1	1	1	1	1	1	1
	Yellow	1	1	1	1	1	1	1	1	1	1	1	1		1	1	1	0	0	0	0	0	0	0	0
	White	1	1	1	1	1	1)	1	1	1	4		1	1	1	1	1	1	1	1	1	1	1	1
	RED (0)	0	0	0	4	U)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	RED (1)	0	0	1	2	D	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
RED																									
	RED (254)	1	1	1	1	1	1		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	RED (255)	1 🛊	1	1	1	X	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	GREEN (0)	0	0	0	(0	U	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	GREEK (1)	0	0		0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
GREEN				1																					
	GREEN (25.4)	r	0	0	0	0	0	0	0	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0
	GREEN (25),		0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
	BLUE (3)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	BLUE (1)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
BLUE																									
10	BLUE (254)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	0
1	BLUE (255)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1

3-8. Power Sequence

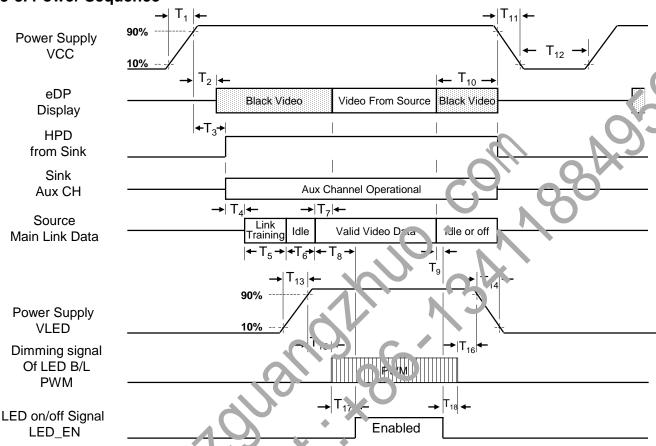
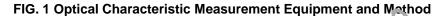


Table 6. POWER SEQUENCE TABLE

	18 5/3 0. I OWER REQUERCE TABLE										
Cumbal	Required	Lir	nits		Notes	Cumbal	Required	Lin	nits	Units	Neteo
Symbol	Ву	Min	Max	Uts	Writes	Symbol	Ву	Min	Max	Units	Notes
T ₁	Source	0.5	0	ms		T ₁₀	Source	35	500	ms	7
T ₂	Sink	5	80	ms	5	T ₁₁	Source	-	10	ms	-
T ₃	Sink	O	80	ฑะ	9 -	T ₁₂	Source	500	-	ms	
T ₄	Source	-	7/1	1705	-	T ₁₃	Source	0.5	10	ms	-
T ₅	Source	-		าร	-	T ₁₄	Source	0.5	10	ms	-
T ₆	Source		1	ms	-	T ₁₅	Source	10	-	ms	-
T ₇	Sink	2	50	ms	-	T ₁₆	Source	10	-	ms	-
T ₈	Source	-	-	ms	5	T ₁₇	Source	0	-	ms	-
T ₉	Sou se	0	5	ms	6	T ₁₈	Source	0	-	ms	-


Note \ 1. Do not insert the mating cable when system turn on.

- 2. alic. Data have to meet "3-3. eDP Signal Timing Specifications"
- 3. Video Signal, LED_EN and PWM need to be on pull-down condition on invalid status.
- 4. LGD recommend the rising sequence of VLED after the Vcc and valid status of Video Signal turn on.
- 5. Driving signal of B/L must be "On" after normal video signal (Normal operating data from source) input.
- 6. When VCC off, LGD suggests that LED EN to be dropped to low level within black video data for reddish prevention (T9 min:0ms / Max 5ms)
- 7. For stable operation of KSF BL, LGD suggests Black video data have to meet min 35ms

4. Optical Specification

Optical characteristics are determined after the unit has been 'ON' and stable for approximately 20 minutes in a dark environment at 25°C. The values specified are at an approximate distance 50cm from the LCD surface at a viewing angle of Φ and Θ equal to Θ .

FIG. 1 presents additional information concerning the measurement equipment and method.

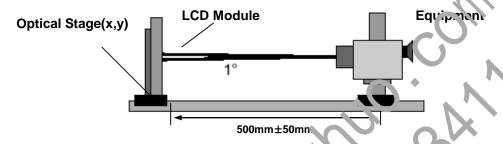


Table 7. OPTICAL CHAI ACTERISTIC:

Ta=25°C, VCC=3.3V, fv=60Hz

P	arameter	Symbol:	Allin	Va urs	May	Units	Notes
			Min	One	Max		_
Contrast Ratio		CR	1000	1367	-		1
Surface Lumina	ance, white	L VH	340	400	-	cd/m ²	2
Luminance Var	intion	$\delta_{\text{WHIT}_2(5P)}$	- •	-	20	- %	3
Luminance van	lation	δ _{WHITE(13P)}		-	35	70	3
Response Time	e (Ta=30°C)	Tr+Tf	<u> </u>	25	35	ms	4
Color Gamut	• //	sRL B	95%	100%	-		CIE 1931
	DEC	Rx		0.656			
	RED	Ry		0.329	Typical + 0.03		
	OLEN,	Gx		0.297			
Color	GREEN	Gy	Typical	0.602			_
Coordinates	BLUE	Bx	- 0.03	0.147			5
	DLUE	Ву		0.064			
	VACUATE	Wx		0.313			
	WEITE	Wy		0.329			
101	x axis, right(Φ=0°)	Θr	80	85	-		
Viewii a Angle	x axis, left (Φ=180°)	Θl	80	85	-	Dogras	6
	y axis, up (Φ=90°)	Θu	80	85	- Degree		6
	y axis, down (Φ=270°)	Θd	80	85	-		
Gray Scale			1.7	2.2	2.7		7

Note)

1. It should be measured in the center of screen(1 Point). Contrast Ratio(CR) is defined mathematically as

2. Surface luminance is the average of 5 point across the LCD surface 50cm from the surface with all pixels displaying white. For more information see FIG 2.

$$L_{WH} = Average(55,33,37,73,77Point)$$

3. The variation in surface luminance, The panel total variation (δ WHITE) is determined by measuring N at each test position 1 through 13 and then defined as following numerical candidates.

For more information see, FIG 2.

$$δ$$
 WHITE (5P) = (1 - $\frac{Min(33,37,55,73,77 \text{ Point})}{Max(33,37,55,73,77 \text{ Point})}$) x 1c($δ$ WHITE (13P) = (1- $\frac{Min \text{ (All measuring Point)}}{Max \text{ (All measuring Point)}}$) x 1c($δ$)

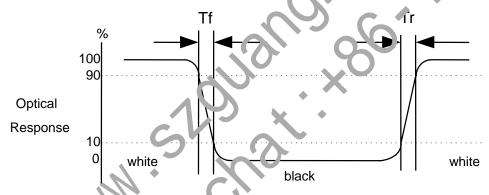

- 4. Response time is the time required for the display to transition from Black to White. For additional information see FIG 3.
- 5. It should be measured in the centur of occeen (1Point).

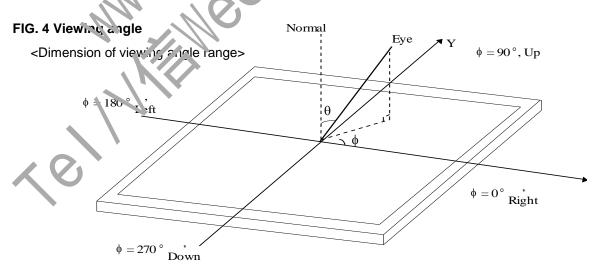
 Color coordinates must be measured with the equipment which has optical wavelength resolution of under 2nm. (ex. PR-670, PR-680, CS-2 00/2000A ...)
- 6. Viewing angle is the angle at which the contrast ratio is greater than 10. The angles are determined for the horizontal or plaxis and the vortical or y axis with respect to the z axis which is normal to the LCD surface. For nore information see FIG 4.
- 7. Gray scale specification

Gray Level	Luminance [%] (Typ)					
LO	TBD					
L31	TBD					
L63	TBD					
L95	TBD					
L127	TBD					
L159	TBD					
L191	TBD					
L223	TBD					
L255	100					

FIG. 2 Luminance

<Measuring point for Average Luminance & measuring point for Luminance variation>




H,V: ACTIVE AREA

5 Poin: 33, 55, 77, 37, 73 13 Point : 11~99 Loint air

FIG. 3 Response Time

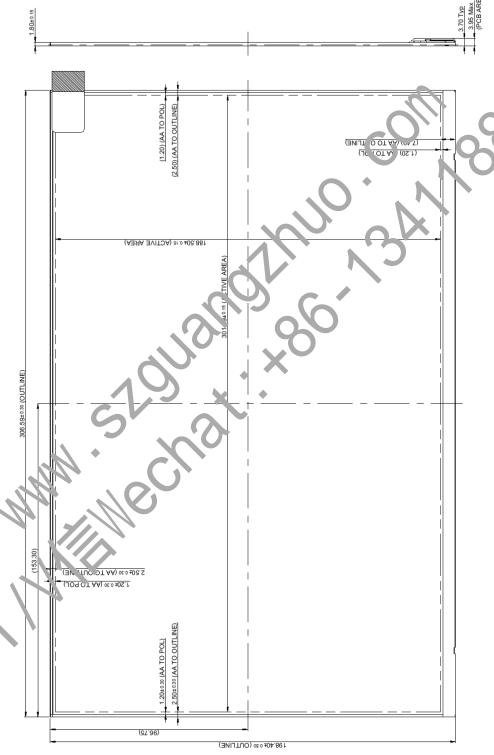
The response time is defined as the following figure and shall be measured by switching the input signal for "black" and "white".

5. Mechanical Characteristics

The contents provide general mechanical characteristics for the model LP140WU1. In addition the figures in the next page are detailed mechanical drawing of the LCD.

	Horizontal	$306.59 \pm 0.3 \text{ mm}$
	Vertical	198.40 ± 0.5 mm
Outline Dimension	Thickness	1.80 ± 0.15 mm (V./C PCBA) 3.95 mm (W PC BA, Viax.) 2.40/3.95 m n (User CNT, Min./M.'x.)
		<u> </u>
Upper Polarizer	Horizontal	$303.99 \pm 0.3 \text{mm}$
Dimension	Vertical	190.70 ± 0.3 mm
Active Display Area	Horizontal	371.59 ± 0.15 mr i
Active Display Area	Vertical	188.50 ± 0.15 mr
Weight	170g (Max.)	
Surface Treatment	Anti glare treatment or the	from took rizer (3H)

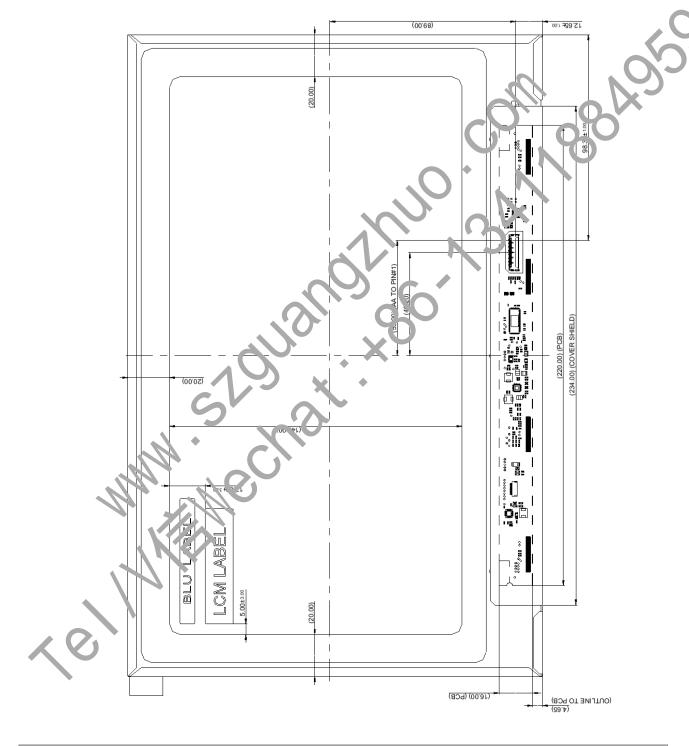
Whill Shari


<FRONT VIEW>

Notes (Measurement method refer to the Appendix C)

1) Unit[mm], General tolerance : \pm 0.5mm

2) All components of LCM is under upper POL.


3) Warpage spec. : Max 0.5mm

<REAR VIEW>

Note) Unit:[mm], General tolerance: ± 0.5mm LCM Label Information refer to the page 26

6. Reliability

Environment test condition

No.	Test Item	Conditions
1	High temperature storage test	Ta= 60°C, 240h
2	Low temperature storage test	Ta= -20°C, 240h
3	High temperature operation test	Ta= 50°C, 50%RH, 240h
4	Low temperature operation test	Ta= 0°C, 240h
5	Vibration test (non-operating)	Random, 1.0Grms, 10 ~ 300Hz(PS > 0.0025) 3 axis, 30min/a xis
6	Shock test (non-operating)	- No functional or cosmetic cufects following a shock to all of class delivering at least 1,80 G in a half sine pulse no longer than 2 inside the display module - No functional defends following a shock delivering action 2 inside each of 6 sides. Each of the 6 sides will be check tested with one each display, for a total of 6 displays
7	Altitude coercting storag a chipment	0 ~ 10.0% feet (3,048m) 24Hr 0 ~ 40,000 feet (12,192m) 24Hr
8	ESD	± 8kV for contact discharge + 15kV for air discharge

[Result Evaluation Criteria]

- 1. Comparing the initial functional FOS status, there should be no major change which might affect the practical gardly function when the display reliability test is conducted.
- 2. After conduct reliability tests, LoD guarantees only functional FOS quality.
- 3. In the Reliability Feet, Confirm performance after leaving in room temp.
- 4. In the standard condition, there shall be no practical problems that may affect the display function 24 hours later after eliability test. After the reliability test, we can guarantee the product only when the corrosion is causing its malfunction. The corrosion causing no functional defect can not be guaranteed.
- ** Remark: MTBF (Excluding the LED) 50,000 hours with a confidence level 90% (Based on 60°C, 1,000 hours Reliability Test with 10pcs LCM)

7. International Standards

7-1. Safety

- a) IEC 62368-1, The International Electro-technical Commission(IEC).

 Audio/video, Information and Communication Technology Equipment Safety Requirements.
- b) EN IEC 62368-1, European Committee for Electro-technical Standardization (CENELEC)
 Audio/video, Information and Communication Technology Equipment Safety Requirements
- c) UL 62368-1, UL LLC.
 - Audio/video, Information and Communication Technology Equipment Safety requirements
- d) CAN/CSA C22.2 No.62368-1, Canadian Standards Association (CSA).

 Audio/video, Information and Communication Technology Equipment Sefety Fiedurements
- e) IEC 60950-1, The International Electro technical Commission (IEC).
 Information Technology Equipment Safety Part 1 : General Requirements

7-2. Environment

a) RoHS, Commission Delegated Directive (EU) 2015/863 of 31 March 2(15 amending Annex II to Directive 2011/65/EU of the European Parliament and of the Council

8. Packing

8-1. Designation of Lot Mark

[DETAIL INFORMATION OF PPID LABEL AND REVISION CODE]

1) MFG ID:

It is subject to change with BLU assembly company. Please refer to the below table for do an

BLU assembly company	wFG ID
NJ Heesung	HMNLG
NJ Starion	ZSNLG
King Display	KL3LG

2) PPID Label Revision:

It is subject to change with Perl event. Please refer to the below table for detail.

Classification	. lo Change	1s' Revision	2nd Revision	•••	9th Revision	
SST(WS)	X00	X01	X02	***	X09	•••
PT(ES)	X.0	X11	X12	***	X19	•••
ST(CS)	X2′	X21	X22	***	X29	***
XB(MP)	A0U	A01	A02		A09	

Country of Origin	Factory ID
C.J: China	LGDNJ
KR: Korea	-

a) Lot Mark

A,B,C : SIZE(INCH) D : YEAR

E: MONTH $F \sim M$: SERIAL NO.

Note

1. YEAR

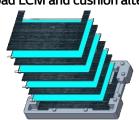
Year	2020	2021	2022	2023	2024	2025	2026	2027	2028	2729
Mark	К	L	М	N	Р	R	(8)	Т	U	V

2. MONTH

Month	Jan	Feb	Mar	Apr	May	Jen	Jul	Aug	Sep	Oct	Nov	Dec
Mark	1	2	3	4	5	6	7	8	9	A	В	С

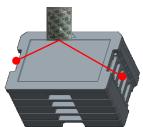
b) Location of Lot Mark

Serial No. is printed on the label The lipel is attached to the backside of the LCD module. This is subject to change without pilor notice.


8-2. Packing Form

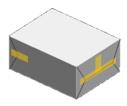
a) Package quantity in one box: 20pcs

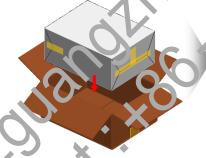
b) Box Size: 412 x 273 x 244


8-3. Packing Assembly

① put a cushion on the Tray and Load LCM and cushion alternately

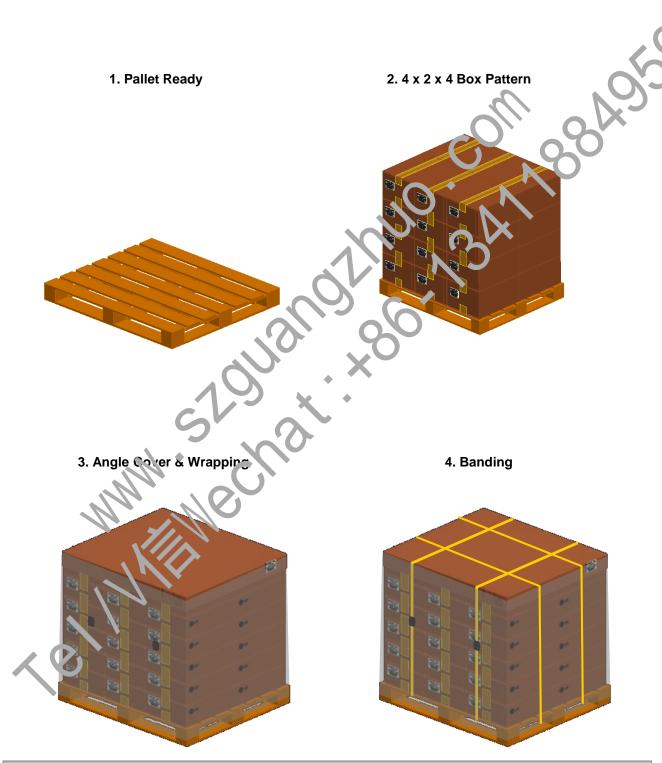
② 5Tray stack + Cover Tray


+ Desiccant 2ea

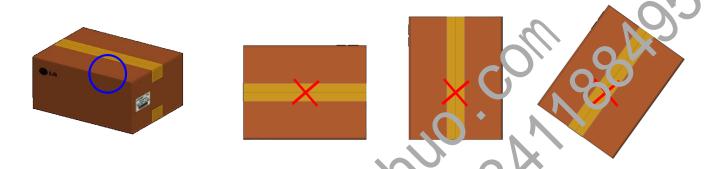

3 Pack the piled Tray by the AL Baq

4 Taping AL Bag

(5) Tray assy + AL Bag put n the Box

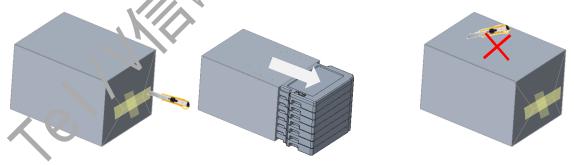


Craping Box

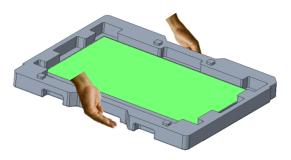

NO.	PUSCRIPTION	MATERIAL			
1	LCD Modine				
2	BA	AL			
3	TAPE	MASKING 20MMX50M			
4	P.\CKING, Tray	EP0			
5	Desiccant	Power Dry			
	вох	SW Paper			
7	TAPE	OPP 70MMX300M			
8	LABEL	ART 100X70			

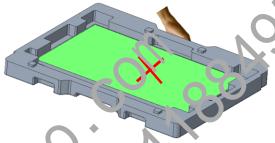
8-3. Packing Assembly (Pallet)

8-4. Precautions for unpacking the Box


a.) Don't throw or tilt the box and put it on a flat surface.

b.) Place the box on a flat floor and Take out the AL bag vertically.

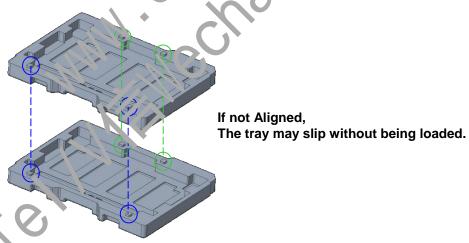

c.) Cut the tape on the side of the bag with a knife and Take out the tray horizontally.



Caution: Do not cut the top of the bag with a knife. (The Knife can damage product)

8-5. Precautions for Handling tray

 a.) Hold center of short or long side of the tray with both hands when handling one or more tryas.



Caution. Do not handle with only one hand.

b.) Always place tray on flat surface and Don't ait with one hand to take out.

c.) When stacking trays, r lease align same position of the protrusion of each tray.

- d.) The maximum stacking quantity is equal to the number of loads per box.
 - Recommended as above because heavier weight can cause muscular skeletal disease and operator handling errors.

9. PRECAUTIONS

to the polarizer.)

Please pay attention to the followings when you use this TFT LCD module.

9-1. MOUNTING PRECAUTIONS

- (1) You must mount a module using holes arranged in four corners or four sides.
- (2) You should consider the mounting structure so that uneven force (ex. Twisted stress) is not a police to the module. And the case on which a module is mounted should have sufficient strength so that external force is not transmitted directly to the module.
- (3) Please attach the surface transparent protective plate to the surface in order to protect ne polarizer. Transparent protective plate should have sufficient strength in order to the resist external order.
- (4) You should adopt radiation structure to satisfy the temperature specification.
- (5) Acetic acid type and chlorine type materials for the cover case are not desirable because the former generates corrosive gas of attacking the polarizer at high temperature and the latter causes circuit break by electro-chemical reaction.
- (6) Do not touch, push or rub the exposed polarizers with glass, tweeler on anything harder than HB pencil lead. And please do not rub with dust clothes with coemical treatment.

 Do not touch the surface of polarizer for bare bond or greasy cloth. Some cosmetics are detrimental
- (7) When the surface becomes dusty, please vipe gently with absorbent cotton or other soft materials like chamois soaks with petroleum benzence. No mal-hexarce is recommended for cleaning the adhesives used to attach front / rear polarizers. During use acelone, toluene and alcohol because they cause chemical damage to the polarizer.
- (8) Wipe off saliva or water drops as soon as possible. Their long time contact with polarizer causes deformations and color fading.
- (9) Do not open the case because inside circuits in not have sufficient strength.

9-2. OPERATING PRECAUTIONS

- (1) The spike noise vauses the missipality perculon of circuits. It should be lower than following voltage: V=± 200n, V(Over and under special or voltage)
- (2) Response time depends on the temperature. (In lower temperature, it becomes longer.)
- (3) Brightness depends contine temperature. (In lower temperature, it becomes lower.)

 And in lower temperature, response time(required time that brightness is stable after turned on) becomes longer.
- (4) Be careful for concensation at sudden temperature change. Condensation makes damage to polarizer or electrical confacted parts. And after fading condensation, smear or spot will occur.
- (5) When fix d patterns are displayed for a long time, remnant image is likely to occur.
- (6) Mc up has high frequency circuits. Sufficient suppression to the electromagnetic interference shall be don, by system manufacturers. Grounding and shielding methods may be important to minimized the interference.

9-3. ELECTROSTATIC DISCHARGE CONTROL

Since a module is composed of electronic circuits, it is not strong to electrostatic discharge. Make certain that treatment persons are connected to ground through wrist band etc. And don't touch interface pin directly.

9-4. PRECAUTIONS FOR STRONG LIGHT EXPOSURE

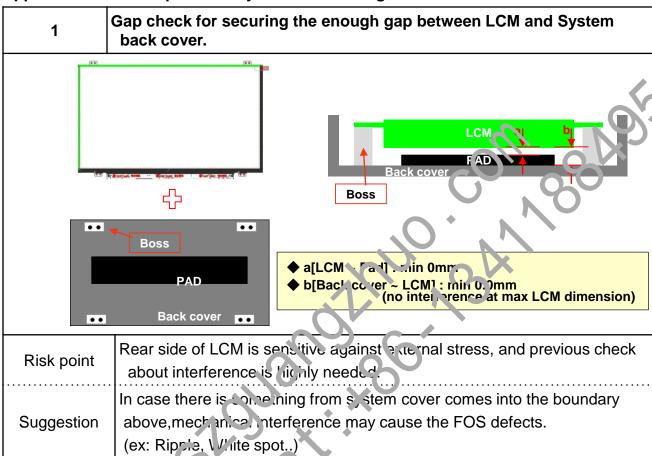
Strong light exposure causes degradation of polarizer and color filter.

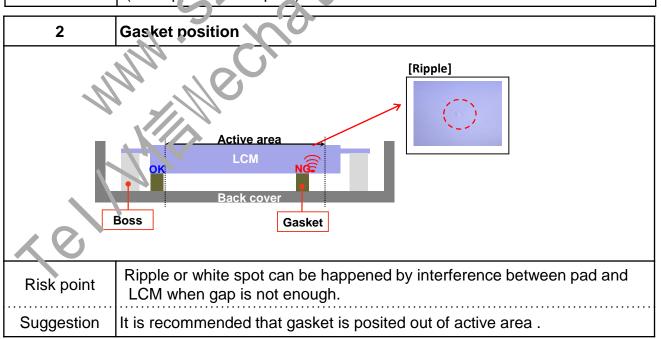
9-5. STORAGE

When storing modules as spares for a long time, the following precautions are necessar

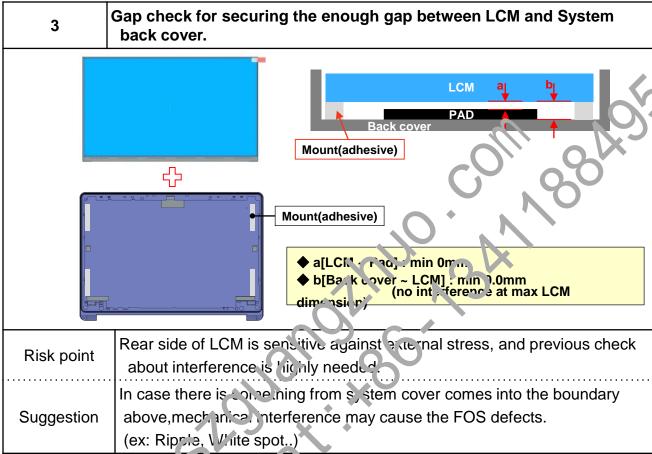
- (1) Store them in a dark place. Do not expose the module to sun ight or flucrescent light. Keep the temperature between 5°C and 35°C at normal humidity.
- (2) The polarizer surface should not come in contact with any other object.

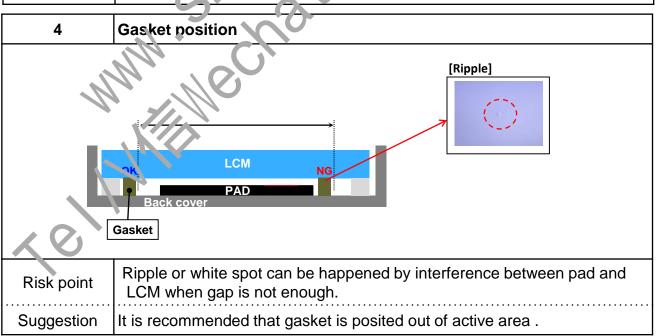
 It is recommended that they be stored in the container in which they were ship, ed.

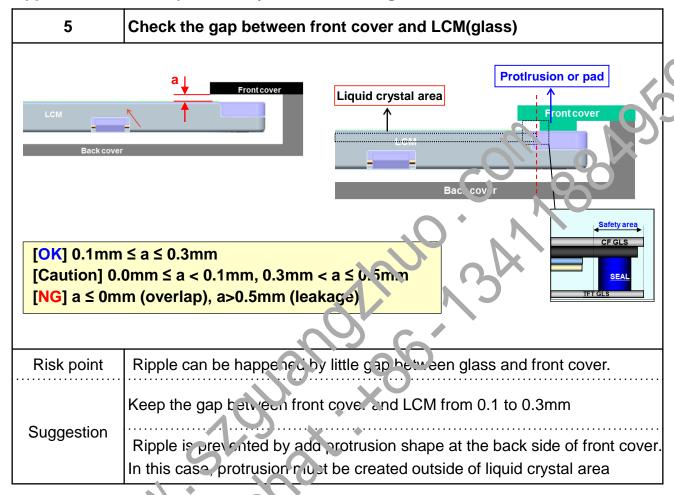

9-6. HANDLING PRECAUTIONS FOR PROTECTION FILM

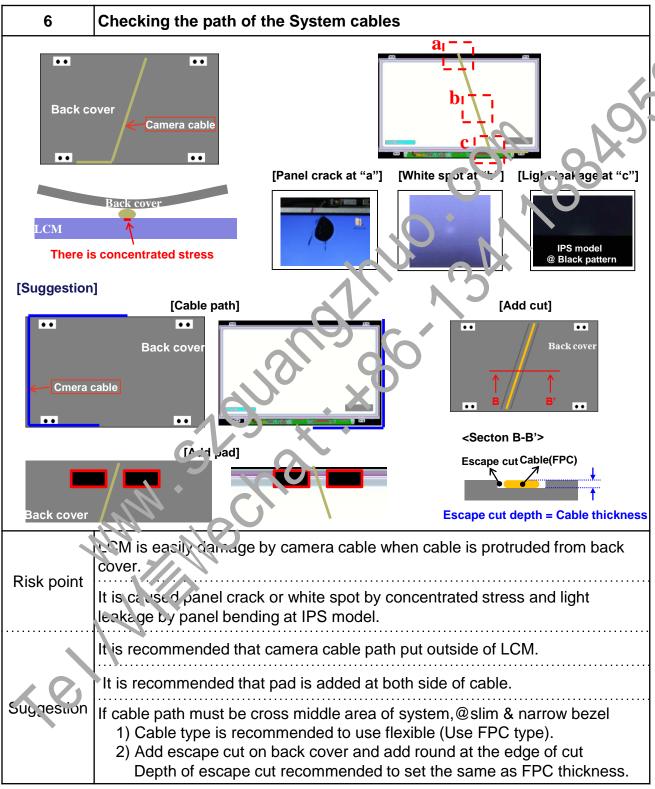

- (1) When the protection film is peeled off, static c ecuicity is generated between the film and polarizer. This should be peeled off slowly and carefully by people who as a electrically grounded and with well ion-blown equipment or in such a condition, etc.
- (2) The protection film is attached to the polarizer with a small amount of glue. If some stress is applied to rub the protection film against the polarizer during the une you peel off the film, the glue is apt to remain on the polarizer.
 - Please carefully peel off the protection film with at rubbing it against the polarizer.
- (3) When the module with protection rilm attached is sored for a long time, sometimes there remains a very small amount of glue still on the polarize a ter the protection film is peeled off.
- (4) You can remove the alue easily. When, he alue remains on the polarizer surface or its vestige is recognized, please with them off with abcorbent cotton waste or other soft material like chamois soaked with not material.

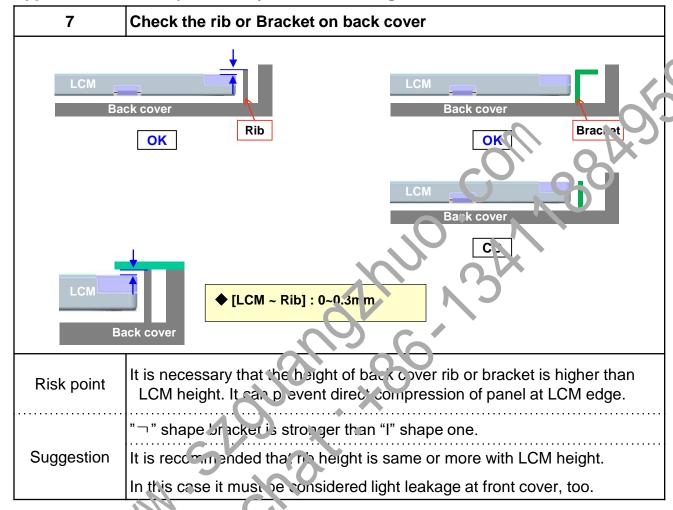
9-7. THE LGD QA RESPONSIBILITY WILL BE AVOIDED IN CASE OF BELOW

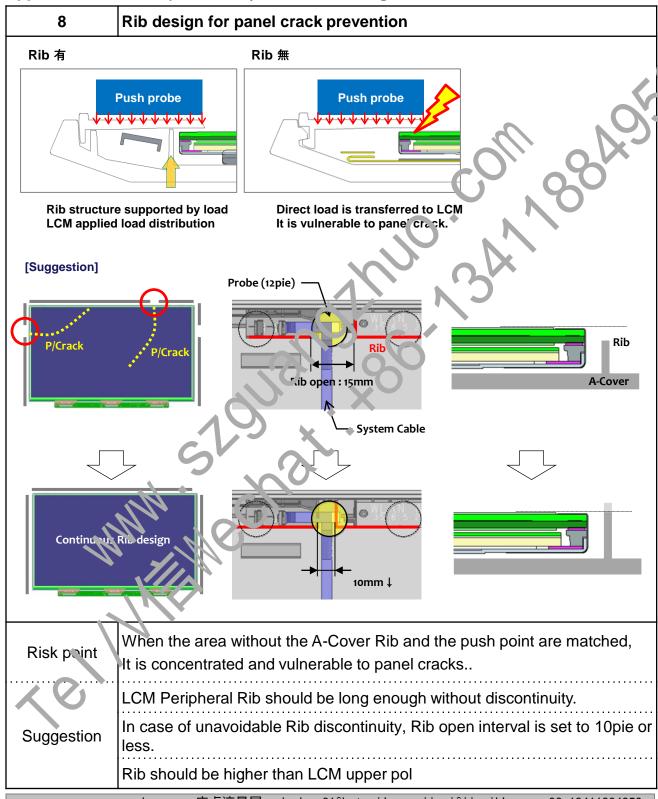

- (1) When the custome, attacher TSM(Touch Sensor Module) on LCM without Supplier's approval.
- (2) When the customer at ac es cover glass on LCM without Supplier's approval.
- (3) When the LCMs were repaired by 3rd party without Supplier's approval.
- (4) When the LC is we're treated like Disassemble and Rework by the Customer and/or Customer's representative without supplier's approval.

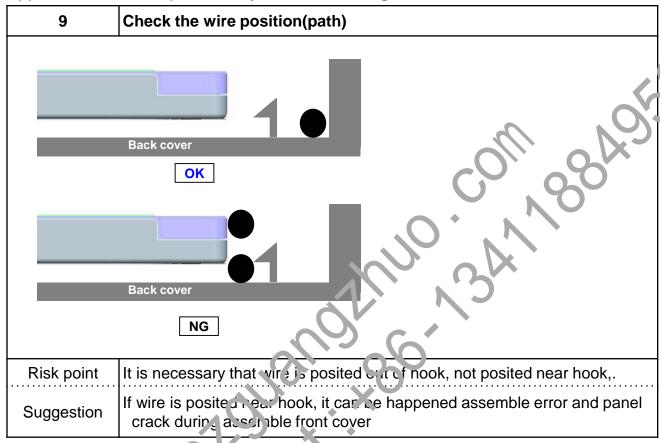


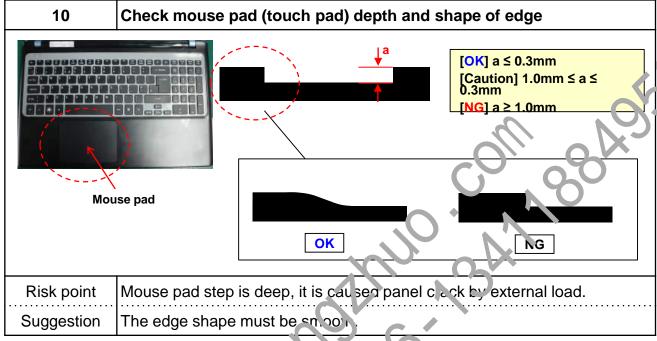


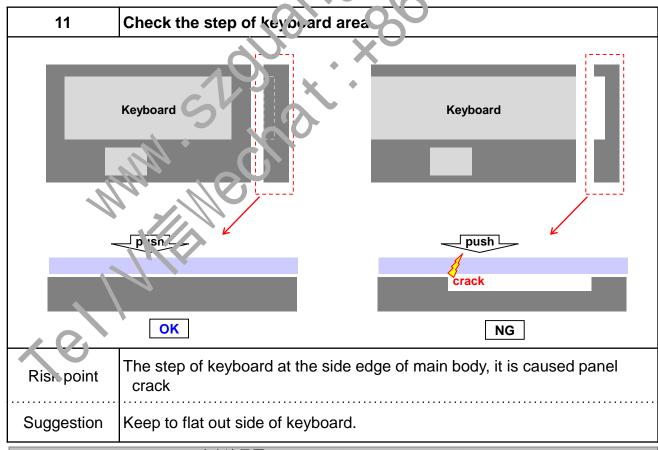


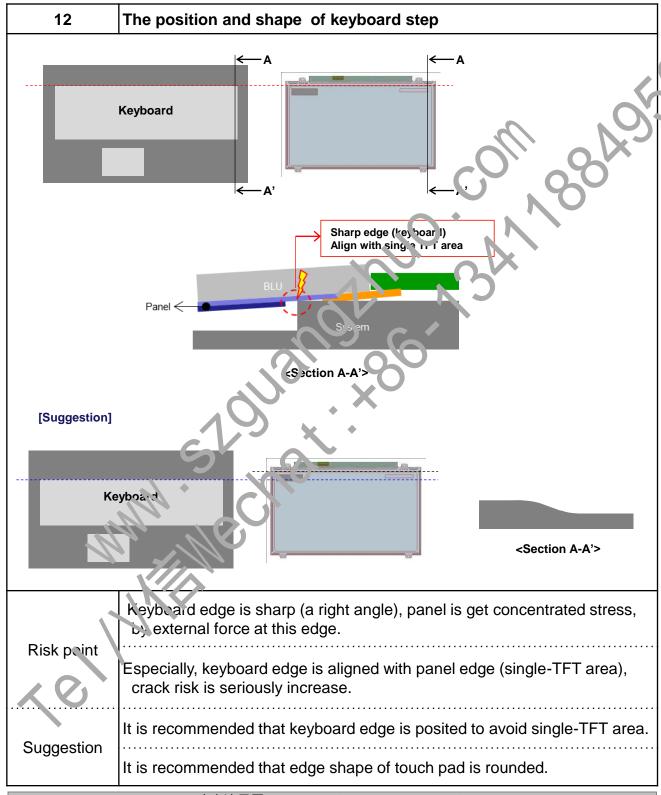


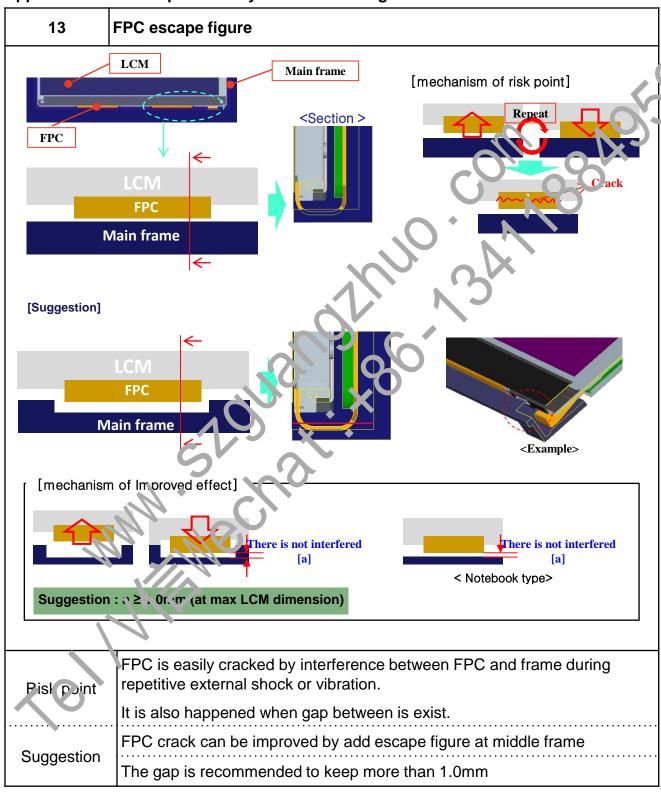


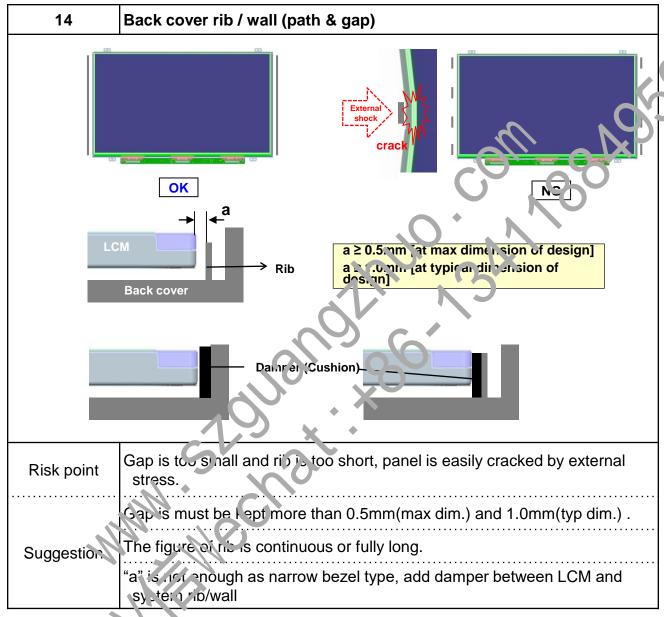


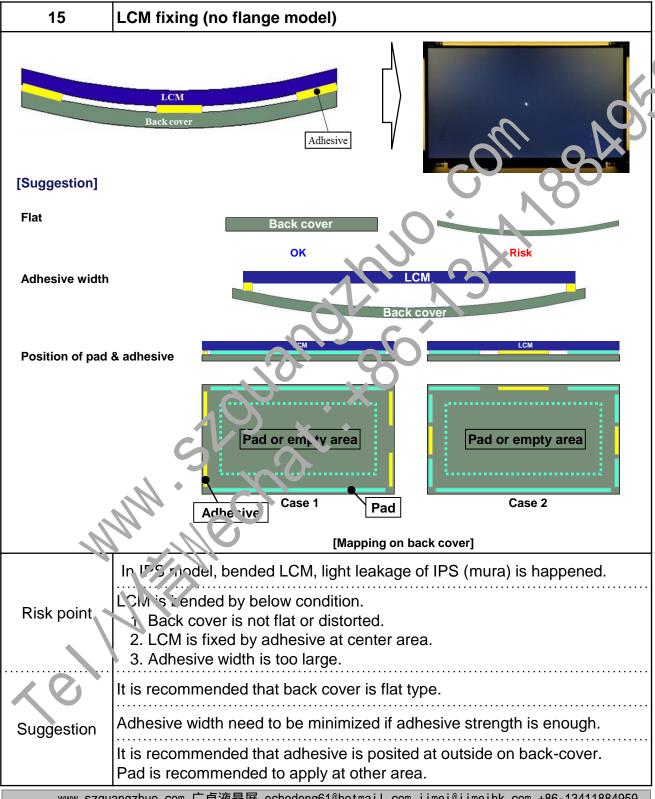


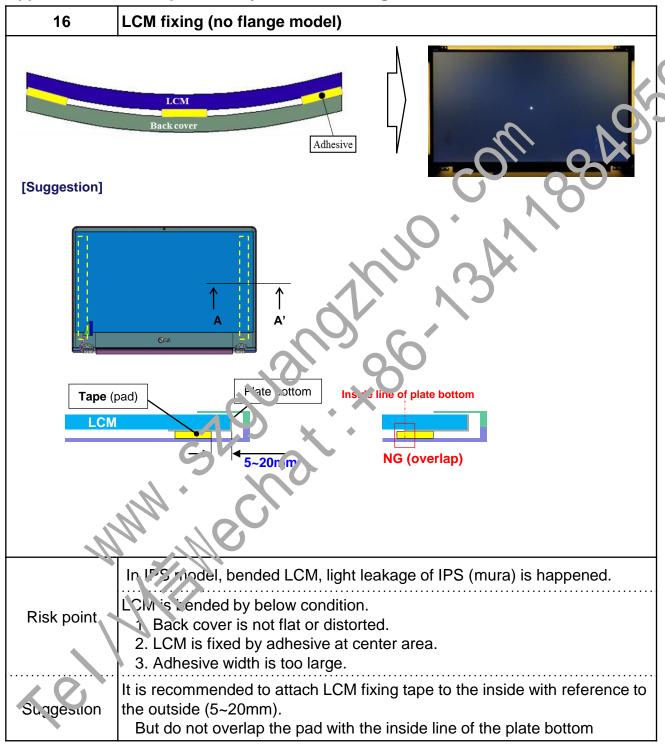


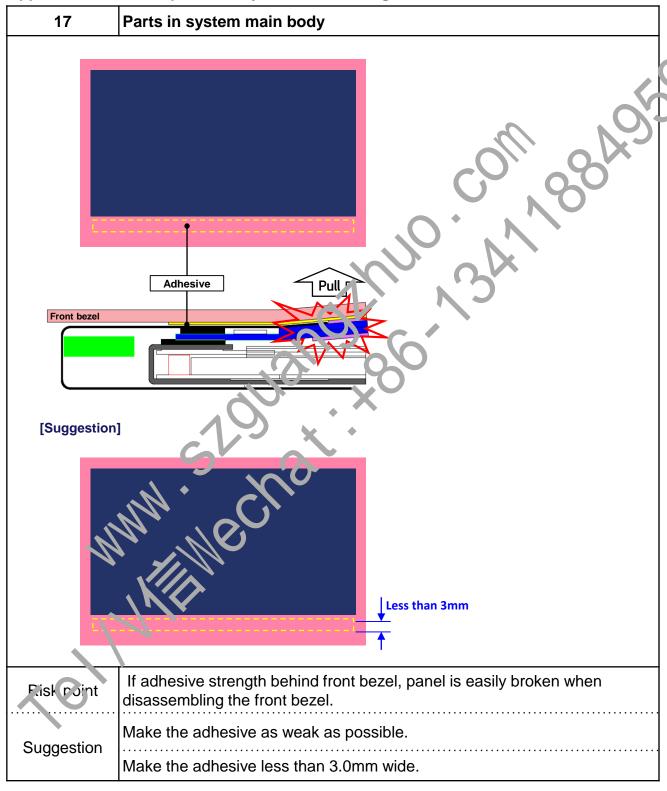


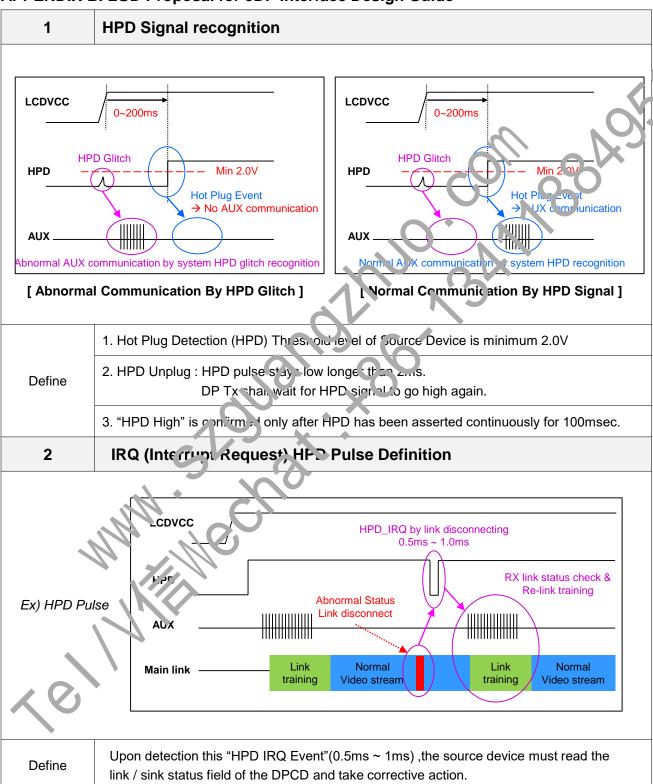


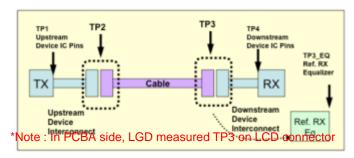


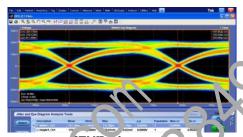











APPENDIX B. LGD Proposal for eDP Interface Design Guide

APPENDIX B. LGD Proposal for eDP Interface Design Guide

3 Main Link EYE Diagram

Volts 0.375UI 4 0.625U

EYI Diagram

Point	Time(UI)	'olta(∍(V)	
1	Any UI location (0mV)	0.000	
2	0.375 <point2<0.625< td=""><td>0 0375</td></point2<0.625<>	0 0375	
3	Point1 + 0.0JI	0.000	
4	0.375 <point4<0.6′.5< td=""><td>-0.03 '5</td></point4<0.6′.5<>	-0.03 '5	

Point		Time(UI)	Voltage(V)	
1		Any UI location (0mV)	0.000	
	2	0.375 <point2<0.625< td=""><td>0.035</td></point2<0.625<>	0.035	
	3	Point1 + 0.45UI	0.000	
	4	0.375 <point2<0.625< td=""><td>-0.035</td></point2<0.625<>	-0.035	

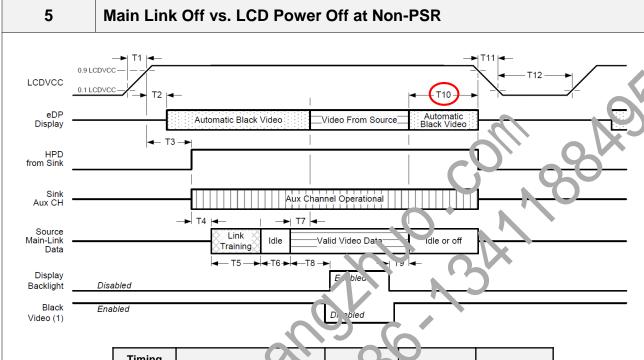
[EYE Mask Vertices at Jource Connector Plas]

[EYE Mask Vertices at Sink Connector Pins]

Define

4

Main Link EYE Diagra n should meet TP2 and TP3 point


Cable tropedance management

Segment	Differential Impedance	Maximum Tolerance	
Co. nector	90 Ω	./ 400/	
W reinanagement	90 Ω	+/- 10%	
Cable	90 Ω	+/- 10%	

Define

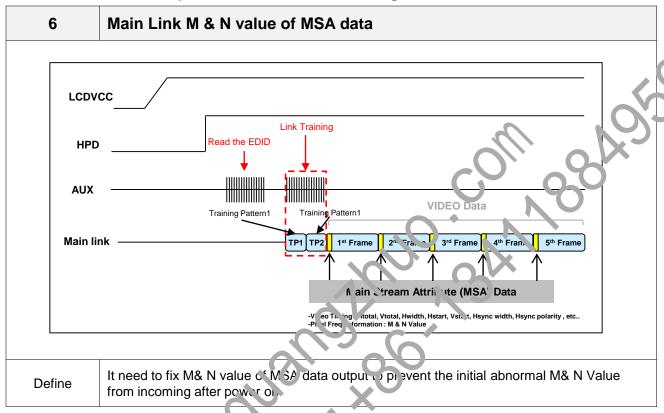
Cable Impedance 90 Ω +/- 10% ($81\Omega \sim 99\Omega$)

APPENDIX B. LGD Proposal for eDP Interface Design Guide

Timing Parameter	Description	Require By	Min	Max
T10	Delay from and chivalid video from Source to Power Off	Source	0ms	500ms

^{*} LGD recommend that Source nust power off the LCD 'CC in hain Link off like below.

Case1. Resolution Change]

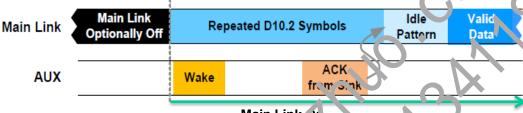


[Case2. Close the Lid]

Define

If Main Link off signal from Source, then LCDVCC must be Power Off within T10 period at Non-PSR mode

APPENDIX B. LGD Proposal for eDP Interface Design Guide



APPENDIX B. LGD Proposal for eDP Interface Design Guide

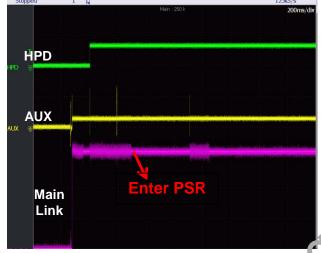
7 PSR Exit

If link training is not required, the Source must begin transmitting data on the Main Link prior to the wake AUX command which occurs through writing 01h to the SET_POWER & SET_DP_PWR_VOLTAGE register (DPCD Address 00600h; see $DP \ vl.2a$), as illustrated in the upper portion of Figure 6-9. This transmitted data must be a repetition of D10.2 symbols (which is the same as Link Training Pattern 1). Note the requirement above to transmit five repeats of the Idle Pattern after receiving ACK from the Sink.

PSR Exit Link Management with No Link Training

Main Link J

-. The below waveform is the issued case


Define

If link training is not required, the source must begin transmitting data on the ML prior to the wake AUX wake-up command.

APPENDIX B. LGD Proposal for eDP Interface Design Guide

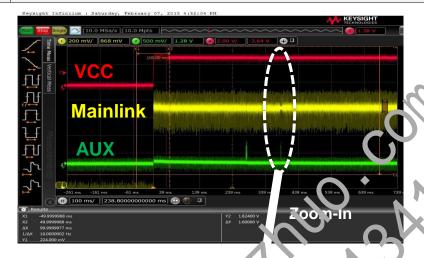
8 1st time PSR Entry after Power on

Stopped 1 N Stopped 1 1 N Stopped N 1 1 N Nan : 250 k 200ms/div

< Issue waveform >

< golution waveform >

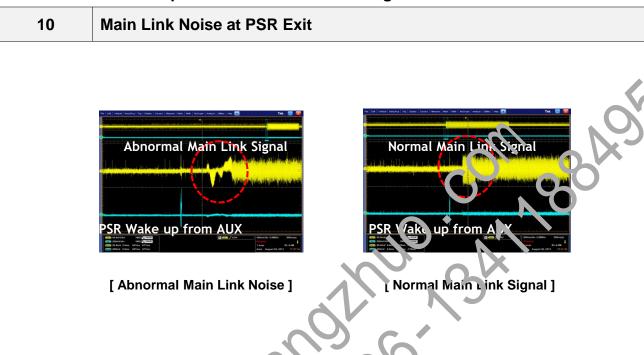
- 1. It is found that with solution, the TCON onto the PSR timing is 1.2s delay from VCC on which avoid TCON capture the wrong data from Dr link (poor link quality) and enter the BIST mode + PSR mode(black screen).
- 2. According to test, link is stab a 800m; after VCC on.


Define

After power(Vcc) on, the provincial not stable, so the source try to PSR entry at 800ms after Power(Vcc) on..

APPENDIX B. LGD Proposal for eDP Interface Design Guide

9 PSR Period Issue

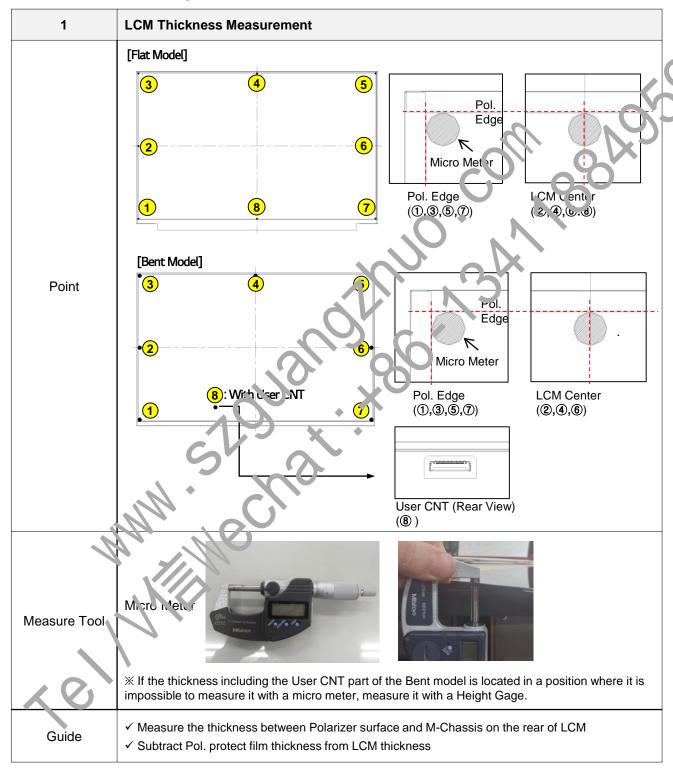


- 1. When issue is hat period, system go to PSR mode for very short time.
- If PSR active period is shorter than 1frame(16.67ms), T-Con can not go to the standby mode for PSR exit.

Define

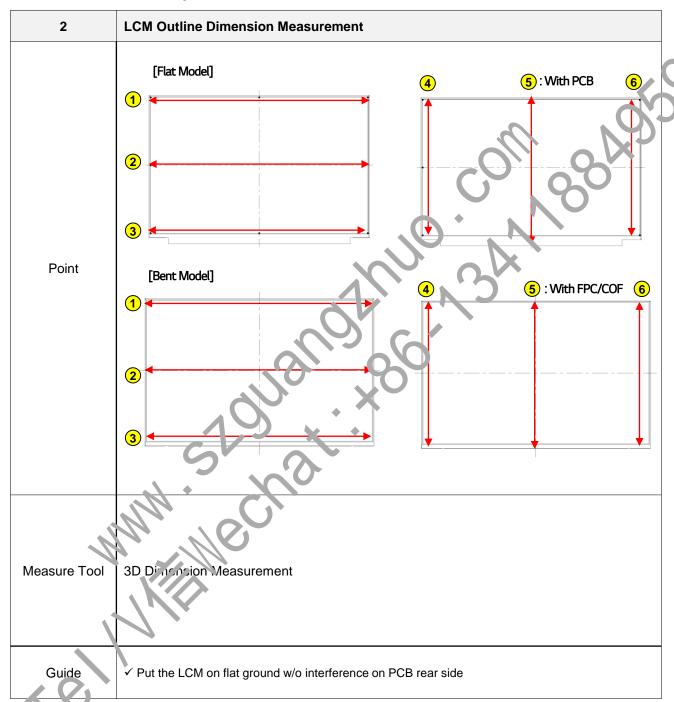
When GPU go to the PSR mode, the source must hold the main link off over than 1frame.

APPENDIX B. LGD Proposal for eDP Interface Design Guide


Define

Main Link Noise at PSR Exit node can be a crus, abnormal display.

Will Sight



APPENDIX C. LGD Proposal for Measurement Method

APPENDIX C. LGD Proposal for Measurement Method

APPENDIX D. Enhanced Extended Display Identification Data (EEDID™) 1/6

APPENDIX D. Enhanced Extended Display Identification Data (EEDID™) 2/6

APPENDIX D. Enhanced Extended Display Identification Data (EEDID™) 3/6

APPENDIX D. Enhanced Extended Display Identification Data (EEDID™) 4/6

APPENDIX D. Enhanced Extended Display Identification Data (EEDID™) 5/6

APPENDIX D. Enhanced Extended Display Identification Data (EEDID™) 6/6

